Additional file 2. Articles not used in the review

A. Articles included at abstract screening but not available in full text

(1996) Phosphorus immobilization by chemical amendments in a constructed wetland.

(2001) Phosphorus and sediment fate within a wetland-reservoir subirrigation system.

(2002) Phosphorus retention and fractionation in masonry sand and light weight expanded shale used as substrate in a subsurface flow wetland.

(2003) Efficacy and mechanisms of P removal by four constructed wetland substrates; influence of season, load, and substrate.

(2006) The effect of hydrologic pulses in nitrogen biochemistry in created riparian wetlands in Midwestern USA.

(2009) Biogeochemical cycling and retention of carbon and nutrients in a constructed wetland receiving agricultural runoff in the San Joaquin Valley, California.

Coombes C (1990) REED BED TREATMENT SYSTEMS IN ANGLIAN WATER. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 229-234.

Coveney M F; Stites D L; Battoe L E; Lowe E F; (1993) Nutrient retention in a restored wetland used for lakewater filtration. : ASLO/SWS, (USA).

Coveney M F; Stites D L; Lowe E F; Battoe L E; (1994) Nutrient removal in the Lake Apopka marsh flow-way demonstration project. , .

Cui I H; Zhu X Z; Luo S M; Li G X; Bai Y; Zhang Z X; Chang F H; (2000) Municipal wastewater treatment and utilization using vertical-flow constructed wetlands. Columbus: Battelle Press.

Davies T H; Cottingham P D; (1993) PHOSPHORUS REMOVAL FROM WASTE-WATER IN A CONSTRUCTED WETLAND. Boca Raton: Lewis Publishers Inc.

Davies T H; Hart B T; (1990) REED BED TREATMENT OF WASTEWATERS IN A PILOT-SCALE FACILITY. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 517-520.

Findlater B C; Hobson J A; Cooper P F; (1990) REED BED TREATMENT SYSTEMS: PERFORMANCE EVALUATION. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 193-204.

Lenhart Christian Francis; (2008) The influence of watershed hydrology and stream geomorphology on turbidity, sediment and nutrients in tributaries of the Blue Earth River, Minnesota, USA.

Leroueil S, Triffault & Wastewater Engineering Magazine Publ.

Muhern Patrick F; Steele Timothy D; (1989) Water-quality ponds - are they the answer? , .

Additional file 2

Paasch Mary M; Kenimer Ann L; Sabbagh George J; Mitchell Forrest L; (1997) Phosphorous water quality model evaluation and comparison for natural and constructed wetlands. .

Poe Amy C; (2004) Denitrification dynamics in a newly constructed wetland to treat agricultural runoff.

Radoux Michel, Kemp Denis (1990) THE IMPACT OF AGEING ON THE PURIFICATION EFFICIENCY OF A PLANTATION OF TYPHA LATIFOLIA L. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 149-159.

Scherup Hans-Henrik, Brix Hans, Lorenzen Bent (1990) WASTEWATER TREATMENT IN CONSTRUCTED REED BEDS IN DENMARK — STATE OF THE ART. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 495-504.

Swindell C E; Jackson J A; (1990) CONSTRUCTED WETLANDS DESIGN AND OPERATION TO MAXIMIZE NUTRIENT REMOVAL CAPABILITIES. Oxford: Pergamon Press Ltd.

Watson J T; Choate K D; Steinger C R; (1990) PERFORMANCE OF CONSTRUCTED WETLAND TREATMENT SYSTEMS AT BENTON, HARDIN, AND PEMBROKE, KENTUCKY, DURING THE EARLY VEGETATION ESTABLISHMENT PHASE. In: Cooper P F; Findlater B C; Constructed Wetlands in Water Pollution Control. : Pergamon, pages 171-182.

White Kevin D; Meyers Amy L; (1997) Stormwater management and aesthetics using wetlands.

William J Mitsch; Julie K Cronk; (1995) Influence of hydrologic loading rate on phosphorus retention and ecosystem productivity in created wetlands. : U. S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, United States.

Wu C Y; Kao C M; Chen K S; Sung W P; Lin C E; (2010) Applying natural treatment systems for the improvement of the quality of river water.

Yeh T Y; Yuan C; Chuang C C; Ju C H; (2006) Phyto Remediation and microbial transformation of contaminants within treatment train natural purification systems. WSEAS Transactions on Mathematics. 5: 1146-1152.

Zhang L Y; Ying Z; Donghai Y; Xi B D; Hui S L; Xiong Y; Xia X F; (2011) EFFECT OF SEASON, NITROGEN LOADING RATE AND OPERATIONAL AGE ON NITROGEN REMOVAL RATE OF FULL-SCALE HORIZONTAL SUBSURFACE FLOW CONSTRUCTED WETLANDS: THREE YEAR’S STUDY. Fresenius Environmental Bulletin. 20: 1749-1757.

B. Excluded articles at full text screening

Reason for exclusion is indicated for each reference. While only one reason is given there may be additional reasons to exclude a certain article. The following exclusion categories have been applied:

- **<1 yr**: Study did not last for at least 1 year, covering all seasons.
- **Abs**: Abstract only.
- **Clim**: Not conducted in a boreal, temperate or subtropical region.
- **Int**: Conducted at lab scale (wetland area <1 m²) or in controlled climate, or not defined as wetland.
- **Out**: Removal rate or efficiency of TN or TP is not reported or possible to be calculated.
- **Per**: Results reported for period of study. Annual values cannot be calculated.
- **Proc**: Study provides results for a specific process only, such as denitrification or uptake, and not a measure of the total removal rate.
- **Sec**: Review article with no primary data.
- **Subj**: Not secondary or tertiary treated domestic wastewater, urban storm water, stream/river water, aquaculture effluent or agricultural runoff.

(1995) The response of a freshwater wetland to longterm, low level nutrient loads. . . (Abs)
(1995) The role of constructed wetlands in the preservation and restoration of the Florida Everglades: First year operational efficiency of the Everglades Nutrient Removal Project. . . (Abs)
(2011) Quantifying nutrient removal from groundwater seepage out of constructed wetlands receiving wastewater effluent. (Out)
(2012) A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta. : U. S. Geological Survey, Reston, VA, United States. (Sec)
Abeyesinghe D H; Shanableh A, Rigden B (1996) Biofilters for water reuse in aquaculture. (Int)
Abou-Elela Sohair I; Golinielli G, Abou-Taleb Enas M; Hellal Mohamed S; (2013) Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering. 61, Part A: 460-468. (Subj)
Bachmann R W; Hoyer M V; Fernandez C, Canfield D E; (2003) An alternative to proposed phosphorus TMDLs for the management of Lake Okeechobee. Lake and Reservoir Management. 19: 251-264. (Subj)

Basseres A, Pietrasanta Y (1991) MECH

Bastos R K. X; Calijuri M L; Bevilacqua P D; Rios E N; Dias E H. O; Capelete

Bayley S E; Guimond J K; (2009) ABOVEGROUND BIOMASS AND NUTRIENT LIMITATION IN RELATION TO RIVER CONNECTIVITY IN MONTANE FLOODPLAIN MARSHES. Wetlands. 29: 1243-1254. (Int)

Bavor H J; Andel E F; (1994) NUTRIENT REMOVAL AND DISINFECTION PERFORMANCE IN THE BYRON BAY CONSTRUCTED WETLAND SYSTEM. Water Science and Technology. 29: 201-208. (Out)

Bavor H J; Davies C M; Sakadevan K (2001) Stormwater treatment: do constructed wetlands yield improved pollutant management performance over a detention pond system?. Water Science and Technology. 44: 569-570. (Sec)

Beley S E; Guimond J K; (2009) ABOVEGROUND BIOMASS AND NUTRIENT LIMITATION IN RELATION TO RIVER CONNECTIVITY IN MONTANE FLOODPLAIN MARSHES. Wetlands. 29: 1243-1254. (Int)

Blackwell Martin S. A; Hogan David V; Malthy Edward (2002) Wetlands as regulators of pollutant transport. Agriculture, hydrology and water quality, . (Sec)

Comin F A; Romero J A; Astorga V, Garcia C (1997) Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff. Water Science and Technology. 35: 255-261. (<1 yr)

Cooper J R; Gilliam J W; (1987) Phosphorus redistribution from cultivated fields into riparian areas. Soil Science Society of America Journal. 51: 1600-1604. (<1 yr)

Correll D L; Jordan T E; Weller D E; (1997) Failure of agricultural riparian buffers to protect surface waters from groundwater nitrate contamination. Groundwater/surface water ecotones; biological and hydrological interactions and management options. (Subj)

Da Motta Marques, D M L; Leite G R; Giovannini S G T; (2001) Performance of two macrophyte species in experimental wetlands receiving variable loads of anaerobically treated municipal wastewater. . 44: 311-316. (<1 yr)

Ensign Scott Howard; (2010) The biogeochemistry and ecology of tidal freshwater rivers. (Proc)

Erlar D V; Eyre B D; Davison L (2010) Temporal and spatial variability in the cycling of nitrogen within a constructed wetland: A whole-system stable-isotope-addition experiment. Limnology and Oceanography. 55: 1172-1187. (<1 yr)

Evans D A; Rusch K A; (2007) Phosphorus treatment capability of the marshland upwelling system under low background salinity conditions. Ecological Engineering. 30: 250-263. (Subj)

Fleischer S, Joelsson A, Stibe L (1997) The potential role of ponds as buffer zones. : QUEST ENVIRONMENTAL, PO BOX 45, HARPENDEN, HERTFORDSHIRE, AL5 5LJ (UK). (Sec)

Forshay K J; Stanley E H; (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry. 75: 43-64. (<1 yr)

Gabriel O, Kaletta T, Balla D () Phosphorus fluxes in a poldered temporary inundated peatland- from soil to surface water. (Abs)

Garcia Jenny A; Paredes Diego, Cubillos Janneth A; (2013) Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Ecological Engineering. 58: 57-62. (Subj)

Gearheart R A; (1992) Use of constructed wetlands to treat domestic wastewater, city of Arcata, California. Water Science and Technology. 26: 1625-1637. (Sec)

Green M B; (1997) Experience with establishment and operation of reed bed treatment for small communities in the UK. Wetlands Ecology and Management. 4: 147-158. (Sec)

Gu B H; (2006) Environmental conditions and phosphorus removal in Florida lakes and wetlands inhabited by Hydrilla verticillata (Royle): implications for invasive species management. Biological Invasions. 8: 1569-1578. (Sec)

Hammer Donald A; (1992) Designing constructed wetlands systems to treat agricultural nonpoint source pollution. Ecological Engineering. 1: 49-82. (Sec)
Headley T R; Huett D O; Davison L (2001) The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands. Water Science & Technology. 44: 77-84. (<1 yr)
Hey D L; Kenimer A L; Barrett K R; (1994) WATER-QUALITY IMPROVEMENT BY 4 EXPERIMENTAL WETLANDS. Ecological Engineering. 3: 381-397. (<1 yr)
Hoffmann C C; Kjaergaard C, Uusi (Sec)
Heal Kate, Younger Paul L; Smith Keith, Glendinning Stephanie, Quinn Paul, Dobbie Karen (2003) Novel use of ochre from mine water treatment plants to reduce point and diffuse phosphorus pollution. Land Contamination and Reclamation. 11: 145-152. (Sec)
Hey D L; Kenimer A L; Barrett K R; (1994) WATER-QUALITY IMPROVEMENT BY 4 EXPERIMENTAL WETLANDS. Ecological Engineering. 3: 381-397. (<1 yr)
Horne A J; (1995) NITROGEN REMOVAL FROM WASTE TREATMENT POND OR ACTIVATED-SLUDGE PLANT EFFLUENTS WITH FREE-SURFACE WETLANDS. Water Science and Technology. 31: 341-351. (Sec)

Kim T E; Chung W M; Lim B S; (2002) Design parameters of high rate algal ponds using filamentous algae matrix for treating rural stream water. Water Science and Technology. 46: 159-164. (<1 yr)

Knowlton M F; Jones J R; (2003) Fecal bacteria, nutrients, chlorophyll, and dissolved oxygen in a constructed habitat wetland receiving effluent and treated municipal river water. Lake and Reservoir Management. 19: 171-183. (Out)

Ko C H; Chang F C; Lee T M; Chen P Y; Chen H H; Hsieh H L; Guan C Y; (2010) Impact of flood damage on pollutant removal efficiencies of a subtropical urban constructed wetland. Science of the Total Environment. 408: 4328-4333. (Subj)

Kohler E A; Poole V L; Reicher Z J; Turco R F; (2004) Nutrient, metal, and pesticide removal during storm and nonstorm events by a constructed wetland on an urban golf course. Ecological Engineering. 23: 285-298. (<1 yr)

Kotti I P; Gikas G D; Tsihrintzis V A; (2010) Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecological Engineering. 36: 862-875. (Subj)

Li C J; Wan M H; Dong Y; Men Z Y; Lin Y; Wu D Y; Kong H N; (2011) Treating surface water with low nutrients concentration by mixed substrates constructed wetlands. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 46: 771-776. (<1 yr)

Li J Z; Li X J; Sun S J; Liu X G; Huang S L; (2011) Restoration of hyper-eutrophic water with a modularized and air adjustable constructed submerged plant bed. Frontiers of Environmental Science & Engineering in China. 5: 573-584. (Out)

Li S, Li H, Liang X Q; Chen Y X; Cao Z H; Xu Z H; (2009) Rural wastewater irrigation and nitrogen removal by the paddy wetland system in the Tai Lake region of China. Journal of Soils and Sediments. 9: 433-442. (Out)

Li X N; Song H L; Li W, Lu X W; Nishimura O (2010) An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering. 36: 382-390. (<1 yr)

Liang M Q; Zhang C F; Peng C I; Lai Z L; Chen D F; Chen Z H; (2011) Plant growth, community structure, and nutrient removal in mixed constructed wetlands. Ecological Engineering. 37: 309-316. (Out)

Llorens M, Perez-Marin A B; Aguilar M I; Saez J, Ortuno J F; Meseguer V F; (2011) Nitrogen transformation in two subsurface infiltration systems at pilot scale. Ecological Engineering. 37: 736-743. (Subj)

Lu X M; Lu P Z; Chen J J; (2012) Nitrogen and phosphorus removal and morphological and physiological response in Nymphaea tetragona under various planting densities. Toxicological and Environmental Chemistry. 94: 1319-1330. (Out)

Maitre Veronique, Cosandey Anne-Claude, Desagher Eric, Parrioux Aurele (2003) Effectiveness of groundwater nitrate removal in a river riparian area; the importance of hydrogeological conditions. Journal of Hydrology. 278: 76-93. (<1 yr)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

O’Geen A T; Maynard J J; Dahlgren R A; (2007) Efficacy of constructed wetlands to mitigate non-point source pollution from irrigation tailwaters in the San Joaquin Valley, California, USA. Water Science and Technology. 55: 55-61. (<1 yr)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)

Oberts G L; Osgood R A; (1991) WATER-QUALITY EFFECTIVENESS OF A DETENTION WETLAND TREATMENT SYSTEM AND ITS EFFECT ON AN URBAN LAKE. Environmental Management. 15: 131-138. (Out)

Oberts G; Osgood R (1988) The effectiveness of a detention/wetland treatment system and its effect on an urban lake. (Out)
Reckhow Kenneth H; Qian Song S; (1994) Modeling phosphorus trapping in wetlands using generalized additive models. Water Resources Research. 30: 3105-3114. (Sec)

Reddy K R; D'Angelo E M; (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Science and Technology. 35: 1-10. (Sec)

Reed S C; Brown D (1995) SUBSURFACE FLOW WETLANDS - A PERFORMANCE EVALUATION. Water Environment Research. 67: 244-248. (Out)

Rivas A, Barcelo-Quintal I, Moeller G E; (2011) Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate. Water Science and Technology. 64: 980-987. (<1 yr)

Rogers J S; Wu C H; (2007) Hydrology, hydrodynamics and sediment transport investigation in a small wetland: Upper dorn Creek Wetland, Wisconsin. . . (<1 yr)

Rosendahl Peter C; Waite Thomas D; (1978) TRANSPORT CHARACTERISTICS OF PHOSPHORUS IN CHANNELIZED AND MEANERING STREAMS. JAWRA Journal of the American Water Resources Association. 14: 1227-1238. (Out)

Shah B Q; Yin C Q; Li G B; (2002) Transport and retention of phosphorus pollutants in the landscape with a traditional, multipond system. Water Air and Soil Pollution. 139: 15-34. (Subj)

Sonstrom R S; Clausen J C; Askew D R; (2002) Treatment of parking lot stormwater using a StormTreat system. Environmental Science & Technology. 36: 4441-4446. (Out)

Sousa W T. Z; Panitz C M. N; Thomaz S M; (2011) Performance of Pilot-scale Vertical Flow Constructed Wetlands With and Without the Emergent Macrophyte Spartina alterniflora Treating Mariculture Effluent. Brazilian Archives of Biology and Technology. 54: 405-413. (<1 yr)

Steinman A D; Ogdahl M E; (2011) Does converting agricultural fields to wetlands retain or release P?. Journal of the North American Benthological Society. 30: 820-830. (Int

Wang G X; Zhang L M; Chua H, Li X D; Xia M F; Pu P M; (2009) A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecological Engineering. 35: 582-590. (Subj)

Wang J, Huang S L; He C D; Ng C O; (2011) NUMERICAL ANALYSIS OF THE PERFORMANCE OF HORIZONTAL AND WAVY SUBSURFACE FLOW CONSTRUCTED WETLANDS. Journal of Hydrodynamics. 23: 339-347. (Subj)

C. Articles containing data published elsewhere

Redundant study

Moustafa M Z; White J R; Coghan C C; Reddy K R; (2011) Influence of hydropattern and vegetation type on phosphorus dynamics in flow-through wetland treatment systems. Ecological Engineering. 37: 1369-1378.

Comment

This is essentially the same as Moustafa M Z; Chimney M J; Fontaine T D; Shih G, Davis S (1996) The response of a freshwater wetland to long-term "low level" nutrient loads - Marsh efficiency. Ecological Engineering. 7: 15-33. (ID 8799429)

Results are also published in O’Luanaigh N D; Goodhue R, Gill L W; (2010) Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland. Ecological Engineering. 36: 1266-1276. (ID 8799538) Should be excluded due to redundancy. No info on location or time period of study. They say 3 years in the abstract but it is not clear whether the study covers 3 complete years. Fig. 2 shows data from May -06 to June -08 which is only two years, and in the text (p. 726) they talk about 2.5 years of monitoring.

Overlaps with White J R; Reddy K R; Majer-Newman J (2006) Hydrologic and vegetation effects on water column phosphorus in wetland mesocosms. Soil Science Society of America Journal. 70: 1242-1251. (ID 8800397) Mass loadings not calculated. No water budget, but hydraulic loading constant (except for drawdown in some mesocosms) However, HRD = 15 days, thus evapotranspiration substantial? Should probably be excluded since outflow volumes are unknown, as well as water additions due to rain.

Redundant study

Comment
Same system as already included. This system is less clear with data presentation. It mostly gives multiple regression. Data are difficult to extract.