Is thiamine deficiency a significant cause of declining bird populations in the Baltic Sea area?
Mistra EviEM PS3 Pilot study

Publication date: 26 November 2013

Please cite as: Söderström, B (2013): Is thiamine deficiency a significant cause of declining bird populations in the Baltic Sea area? Mistra EviEM, PS3 Pilot study (www.eviem.se)
Is thiamine deficiency a significant cause of declining bird populations in the Baltic Sea area?

Pilot study

Bo Söderström
Mistra EviEM
The Royal Swedish Academy of Sciences
Box 50005, SE - 104 05 Stockholm, Sweden
Email: bo.soderstrom@eviem.se
Abstract

Thiamine (vitamin B1) is essential for many organisms since it is involved in several basal metabolic processes. In the Baltic Sea area, thiamine deficiency has been reported for several bird species and it has been suggested as a significant factor explaining the bird paralytic syndrome in, for example, herring gulls and eiders. A link has also been implied between the paralytic syndrome and declines in many bird populations in the Baltic Sea area. This pilot study sought to answer the possibility of conducting a systematic review on a possible link between declining bird populations in the Baltic Sea area and thiamine deficiency. Although the review question fulfills many of the mandatory and optional criteria for a systematic review, it is not covered in the scientific literature to such an extent that a systematic assessment can be implemented. Only 7 hits are returned by the Web of Knowledge when using different combinations of Baltic, thiamine and bird. To at least provide correlative evidence linking thiamine deficiency to population declines, further research and monitoring activities are called for. Given the strong anthropogenic influence on bird populations in the Baltic Sea area other hypotheses should be explored simultaneously.
Background

The Baltic Sea area is a highly disturbed ecosystem strongly affected by anthropogenic activities, which in turn impact more or less resident bird populations. Eutrophication of the Baltic Sea is often considered as the main factor behind the observed increase of eider populations in the Baltic until 1990. A surplus of nitrogen and phosphorous led to increased biomass of phytoplankton, which in turn benefited filtrating blue mussels that is the main food of eiders. In contrast, the eider has shown a dramatic population decrease between 1992-93 and 2007-09 (− 51%, Ottvall 2012). It should be noted that there are large regional differences in population trends within the Baltic Sea area: the population trend is similar in Sweden and Finland whereas the Danish eider population size has been constant since 1988 (Christensen and Bregnballe 2011).

Population trends of other bird species have shown a similar pattern of substantial population increases followed by decreases. For example, the Swedish population of the herring gull decreased by 20-29% between 1998 and 2008, but then from a historically high population size likely caused by the now discontinued use of open waste dumps (Ottvall et al. 2008). Moreover, overfishing of large predatory fishes, such as the cod, in the Baltic Sea has caused a predatory release1 of sticklebacks and other smaller fish. In turn, this is a likely explanation for the significant population increases of fish-feeding bird species such as common tern, arctic tern and razorbill in the Baltic Sea area (Ottvall et al. 2008).

Mussel-eating ducks other than eider have also shown dramatic population decreases since 1992-93: common scoter -48%, velvet scoter -56%, and long-tailed duck – 65%. A compilation of existing knowledge of reasons for population declines of mussel-eating ducks in the Baltic Sea area since 1990 was recently published (Ottvall 2012). It is concluded that most researchers agree that multiple, interacting factors are behind the observed population declines. These include:

1) Food shortage or reduced food quality, due to reduced eutrophication level of some parts of the Baltic Sea (e.g. in Denmark), leading to reduced breeding success and/or making ducks more susceptible to diseases (Skov et al. 2011).

2) Increased predation pressure on nesting eider females mainly due to a recovering population of the white-tailed eagle (Kilpi and Öst 2002).

3) Recurring oilspills in areas where many ducks congregate during winter (e.g., Hoburg bank south of Gotland where a large part of the long-tailed duck population overwinter; Larsson and Tydén 2005).

4) Fishery bycatches leading to the death of 200 000 birds per year (Zydelis et al. 2009).

5) Hunting causes the direct death of 65 000 eiders annually in the Baltic Sea area and may also indirectly lead to reduced physiological status due to lead poisoning (Hollmén et al. 1998).

6) Diseases have repeatedly been shown to increase both adult and juvenile mortality in the Baltic Sea area eider population (e.g., bird cholera in Denmark, reovirus in Finland). Lately, bird paralysis or so-

1 Occurs when a predator species is removed from a prey species by, for example, a great reduction in the predator population size, which releases the prey from one of the factors limiting its population size.
called bird death in Sweden has received much attention. One of the main hypotheses is that thiamine (vitamin B1) deficiency may explain the paralysis syndrome (Balk et al. 2009a).

7) Persistent pollutants such as PCB and mercury that accumulate along food chains, leading to reduced breeding success through, for example, thinner egg shells (but see Franson et al. 2000).

8) Climate change affecting salinity and water temperature, in turn affecting eider food quality (blue mussel nutritional value) and/or time of breeding (Lehikoinen et al. 2006; Waldeck and Larsson 2013).

Thiamine deficiency as a significant factor behind bird population declines

Thiamine (vitamin B1) is involved in several basal metabolic processes. It is essential for many organisms, and in aquatic systems it is mainly produced by phytoplankton and transferred to top predators via zooplankton grazers and planktivorous fish. Stress factors such as salinity, temperature and light conditions can alter the thiamine content of phytoplankton. In a recent PhD-thesis, Sylvander (2013) suggested a pattern of trophic dilution of the thiamine content of the pelagic food web in the Baltic Sea. The higher the trophic level of an organism, the lower was its thiamine content. Thiamine deficiency has been reported in Baltic populations of the Atlantic salmon as early as in 1974 (Norrgren et al. 1993).

Increasing numbers of wild birds dying from a paralytic syndrome around the Baltic Sea area have been reported from the southernmost part of the Swedish coast (from 2002 to 2008 in Skåne, and from 2000 to 2007 in Blekinge; Table S1 in Balk et al. 2009a). This disease has been observed in various bird species but predominantly in relatively large, colony-nesting birds such as the herring gull (Table S1 in Balk et al. 2009a). Fifty-four percent of 837 bird individuals from Skåne showed signs typical of different stages of the paralytic syndrome (first indication is difficulty in keeping wings folded, followed by the loss of ability to fly, complete paralysis, and finally death). Although the authors could not report any incident of adult eiders dying from paralytic disease in Skåne, they report occurrence of paralytic syndrome in adult eiders from Södermanland and/or Blekinge (number of individuals or proportion were not reported in Balk et al. 2009a). The authors also suggest that thiamine deficiency in egg yolk and newly hatched eiders could explain the near-absence of eider pulli in Södermanland between 2004 and 2007 (see also Balk et al. 2009b). The role of thiamine deficiency to explain the paralytic syndrome was purportedly evidenced by the improvement observed upon thiamine treatment of 9 out of 14 affected herring gull individuals over a 4-year period (but see Sonne et al. 2012).

The authors further suggest that thiamine deficiency is a cause of the recent decline of certain bird populations around the Baltic Sea area. Thiamine deficiency is “a possible cause for observed population declines” (Balk et al. 2009a), “most probably has contributed significantly to declines in many bird populations during the last decades” (Balk et al. 2011), and is “the dominating cause of the observed population declines in many bird species during the last three decades” (Balk et al. 2012). Thus it seems as if their level of confidence has increased as time progresses despite a lack of new (published) data.
The thiamine deficiency hypothesis has attracted considerable attention, but the research behind it has also been questioned on several issues:

a) Rocke and Barker (2010) stated that many of the clinical signs of the paralytic syndrome are shared by other diseases such as avian botulism (see also Neimanis 2007). Balk et al. replied (2010) that they do not want to exclude botulism as a secondary effect of thiamine deficiency.

b) Sonne et al. (2012a) used a systematic approach to review the literature and found that paralysis in birds may be caused by a multitude of factors including intoxication (botulism, contaminants), deficiencies (vitamins, elements, minerals) or infectious agents (virus).

c) Sonne et al. (2012b) stated that simple population models are not adequate to make a case for the thiamine deficiency hypothesis. Data restricted in time and space were used to parameterize population models for long-lived and widely distributed species (i.e., herring gull and eider) that may be affected by different pressures between summer and winter, and between years (see also compilation by Ottvall 2012). Thus the link between population declines and thiamine deficiency is weak.

However, Tillitt et al. (2012) warned against a causal dismissal of thiamine deficiency as a plausible cause of excessive avian mortality and population declines. They drew a parallel to their work with salmonid predators in the Great Lakes, U.S.A., where thiamine deficiency could explain large-scale recruitment failure.

To conclude, thiamine levels are low in birds from the southern parts of the Baltic Sea area, and the causative agent(s) explaining low levels of thiamine in birds need(s) immediate research attention. But it is yet unclear whether this deficiency is a significant factor explaining the bird paralytic syndrome. Moreover, until further studies have been performed it is premature to suggest a causative link between the paralytic syndrome and declines in many bird populations in the Baltic Sea area. This was also concluded in the Scientific Memorandum requested by the Swedish Environmental Protection Agency (Sonne et al. 2011): “Although paralytic syndrome caused by thiamine deficiency may have contributed to breeding failures in some bird populations, it has yet to be demonstrated that paralytic syndrome has contributed significantly to long-term declines of European bird species”. In fact, with the exception of Blekinge, monitoring performed by personnel from several county boards in southern Sweden has not discovered more than a few new cases of birds with paralytic syndrome since 2009 (Ottvall, pers. comm.).

Search scoping

The thiamine deficiency hypothesis fulfills many of the mandatory and optional criteria for a systematic review: a) it deals with problem descriptions whose scientific support is insufficient, disputed or incompletely known, b) it is controversial and the subject of great public attention, c) it is seen as an environmental policy issue of high concern, and d) it deals with new forms of environmental pressures. However, it is not covered in the scientific literature to such an extent that a systematic assessment can be implemented. Only 7 hits are returned by the Web of Knowledge when using different combinations of Baltic, thiamine and bird (see below).
Systematic Review question: *Is thiamine deficiency a significant cause of declining bird populations in the Baltic Sea area?*

Web of Knowledge searches made September 4 and 9, 2013:

- Thiamin* 11993 hits
- Thiamin* AND deficienc* 2447 hits
- Thiamin* AND deficienc* AND salmon* 95 hits
- Thiamin*AND salmon* 296 hits
- Thiamin* AND gull* 4 hits
- Thiamin* AND Baltic AND (avian OR bird* OR eider* OR gull* OR waterbird*) 7 hits
- Baltic AND (avian OR bird* OR eider* OR gull* OR waterbird*) AND (decline* OR decrease* OR change*) AND (population*) 81 hits
- Baltic AND (avian OR bird* OR eider* OR gull* OR waterbird*) AND ("chronic disease*" OR contaminant* OR deficienc* OR "infectious disease*" OR mercury OR neurolog* OR nutrion* OR organochlorine* OR paralysis OR selenium OR thiamine OR "vitamin A") OR "Vitamin B" OR "Vitamin D" OR "Vitamin E" OR zinc)) 66 hits

Ongoing and future studies

Lennart Balk and colleagues at ITM, Stockholm University, are currently investigating factors explaining low levels of thiamine in eiders and blue mussels. The interactions between the benthic fauna and sea ducks in a changing Baltic environment are also being studied by Kjell Larsson, Högskolan Gotland. Furthermore, sea duck population sizes are monitored by Leif Nilsson, Lund University. To investigate the potential link between thiamine deficiency and bird population declines, a coordinated effort between researchers from different disciplines is needed. For example, it could be worthwhile to continue to monitor thiamine levels of eiders and herring gulls along different parts along the coast to the Baltic Sea. These two species could act as model species with different autecological strategies but sharing a similar population decline since the year 2000. If outbreaks of the paralysis syndrome occur, thiamine level tissue sampling should be done on both paralyzed individuals and those not showing any signs. Both are long-lived species so adult mortality is likely to be a more limiting factor on population sizes than reproductive success in single years (known to strongly vary between years in the eider). Therefore, sampling of thiamine levels in egg yolk may be a less successful strategy. Tissue sampling of adult individuals should be performed alongside long-term monitoring of population sizes in different locations along a north-south gradient (cp. Balk et al. 2009). It may then be possible to provide at least correlative evidence linking thiamine deficiency to...
population declines. Given the strong anthropogenic influence on bird populations in the Baltic Sea area other hypotheses should be explored simultaneously.

References

Mistra EviEM Pilot studies

PS1 Pilot study: How are fluxes of greenhouse gases between boreal forest ecosystems and the atmosphere affected by uneven-aged forestry? (October 2012)

PS2 Pilot study: What is the effect of pharmaceutical residues in water on aquatic biota? (February 2013)

PS3 Pilot study: Is thiamine deficiency a significant cause of declining bird populations in the Baltic Sea area? (November 2013)
Mistra EviEM conducts systematic reviews of environmental issues identified as important by public agencies and other stakeholders. These provide an overall assessment of the state of scientific knowledge and help to improve the basis for environmental decision-making in Sweden.

All systematic reviews are preceded by a pilot study. If such a study indicates that the topic is not suitable for systematic review, the process ends with the pilot study being published in this series instead.